Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Omega ; 9(12): 14043-14053, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559943

RESUMO

Substantial efforts have been made to design and investigate new approaches for high-performance nonlinear optical (NLO) materials. Herein, we report polaron formation in conducting polymers as a new approach to designing materials with a large NLO response. A comparative study of polypyrrole and polypyrrole-based polaron (nPy+ where n = 1, 3, 5, 7, and 9) is carried out for optoelectronic and NLO properties. The studied polarons (PPy+) show excellent electronic properties and have reduced ionization potential (IP) as compared to neutral PPy, and a monotonic decrease is observed with increased chain lengths (1Py to 9Py). Interesting trends of global reactivity descriptors can be seen; the softness (S) increases with an increase in the chain length of PPy, while the hardness (η) decreases in the same fashion. The EH-L gaps for the PPy+ polaronic state are significantly lower than their corresponding neutral PPy. In the polaronic model (PPy+), radicals decisively reduce the crucial excitation energy, reminiscent of excess electrons (alkali metals). The performed TDOS spectral analysis further justifies the better conductive and electronic properties of polarons (PPy+) with increased chain lengths (conjugation). The static hyperpolarizability response (ßo) is recorded up to 1.3 × 102 au for 9Py, while for polaron 9Py+, it has increased up to 3.2 × 104 au. The static hyperpolarizability of the 9Py+ polaronic state is 246 times higher than that of the corresponding neutral analogue, 9Py. It is observed that the values of ßo obtained at the CAM-B3LYP/6-311+G(d,p) level of theory are comparable to those obtained at the LC-BLYP and ωB97XD functionals. The ßvec values show a strong correlation with the total hyperpolarizability (ßo). Furthermore, the calculated second harmonic generation (SHG) values are up to 4.0 × 106 au at 532 nm, whereas electro-optic Pockel's effect (EOPE) is much more pronounced at the smaller dispersion frequency (1064 nm). The TD-DFT study reveal the red-shifted absorption maxima (λmax) with an increased length of PPy+. A significant reduction in excitation energy (ΔE) is observed with increased length of PPy and PPy+, which also favors the improved NLO response. Hence, the studied thermally conducting polypyrrole-based polarons (PPy+) are new entries into NLO materials with better electrical and optical features.

2.
Phys Chem Chem Phys ; 26(8): 6794-6805, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323625

RESUMO

Calixarenes, as novel organic materials, can play a pivotal role in the development of high-performance nonlinear optical materials due to the ease of design and fabrication. In this study, DFT simulations were employed to investigate the geometric, electronic, and NLO responses of calix[4]arene doped with Li3O, Na3O, and K3O superalkalis. The computed values of the vertical ionization energies and interaction energies indicate the chemical and thermodynamic stabilities of the targeted M3O@calix[4]arene complexes. The corresponding energy gaps (2.01 to 3.49 eV) are notably reduced, indicating the semiconductor nature of the materials. Surprisingly, the M3O@calix[4]arene complexes exhibit transparency in the UV/visible range as the absorption peaks are shifted in the near infrared (NIR) region. The highest values of 5.9 × 105 a.u. and 2.3 × 108 a.u. for the respective first and second hyperpolarizabilities are observed for Na3O@calix[4]arene. Furthermore, the Na3O@calix[4]arene complex exhibits maximum values of 2.3 × 105 a.u. for second harmonic generation (SHG) and (K3O@calix[4]arene) 2.3 × 106 a.u. for the electro-optical Pockels effect (EOPE) at 1064 nm. Similarly, approximations are made for the dynamic second hyperpolarizability coefficients (EOKE and EFISHG) at different wavelengths. Notably, the Na3O@calix[4]arene complex demonstrates the highest quadratic nonlinear refractive index (n2) of 9.5 × 10-15 cm2 W-1 at 1064 nm. This research paves the way for the development of stable calix[4]arenes doped with superalkalis, leading to an improved nonlinear optical (NLO) response.

3.
Saudi Pharm J ; 32(2): 101936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38261938

RESUMO

In this work, we investigated Diospyros kaki extract and an isolated compound for their potential as xanthine oxidase (XO) inhibitors, a target enzyme involved in inflammatory disorders. The prepared extract was subjected to column chromatography, and dinaphthodiospyrol S was isolated. Then XO inhibitory properties were assessed using a spectrophotometry microplate reader. DMSO was taken as a negative control, and allopurinol was used as a standard drug. The molecular docking study of the isolated compound to the XO active site was performed, followed by visualization and protein-ligand interaction. The defatted chloroform extract showed the highest inhibitory effect, followed by the chloroform extract and the isolated compound. The isolated compound exhibited significant inhibitory activity against XO with an IC50 value of 1.09 µM. Molecular docking studies showed that the compound strongly interacts with XO, forming hydrogen bond interactions with Arg149 and Cys113 and H-pi interactions with Cys116 and Leu147. The binding score of -7.678 kcal/mol further supported the potential of the isolated compound as an XO inhibitor. The quantum chemical procedures were used to study the electronic behavior of dinaphthodiospyrol S isolated from D. kaki. Frontier molecular orbital (FMO) analysis was performed to understand the distribution of electronic density, highest occupied molecular orbital HOMO, lowest unoccupied molecular orbital LUMO, and energy gaps. The values of HOMO, LUMO, and energy gap were found to be -6.39, -3.51 and 2.88 eV respectively. The FMO results indicated the intramolecular charge transfer. Moreover, reactivity descriptors were also determined to confirm the stability of the compound. The molecular electrostatic potential (MEP) investigation was done to analyze the electrophilic and nucleophilic sites within a molecule. The oxygen atoms in the compound exhibited negative potential, indicating that they are favorable sites for electrophilic attacks. The results indicate its potential as a therapeutic agent for related disorders. Further studies are needed to investigate this compound's in vivo efficacy and safety as a potential drug candidate.

4.
ACS Omega ; 9(3): 3541-3553, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284053

RESUMO

Ab initio calculations were performed to determine the sensing behavior of g-C3N4 and Li metal-doped g-C3N4 (Li/g-C3N4) quantum dots toward toxic compounds acetamide (AA), benzamide (BA), and their thio-analogues, namely, thioacetamide (TAA) and thiobenzamide (TAA). For optimization and interaction energies, the ωB97XD/6-31G(d,p) level of theory was used. Interaction energies (Eint) illustrate the high thermodynamic stabilities of the designed complexes due to the presence of the noncovalent interactions. The presence of electrostatic forces in some complexes is also observed. The observed trend of Eint in g-C3N4 complexes was BA > TAA > AA > TBA, while in Li/g-C3N4, the trend was BA > AA > TBA > TAA. The electronic properties were studied by frontier molecular orbital (FMO) and natural bond orbital analyses. According to FMO, lithium metal doping greatly enhanced the conductivity of the complexes by generating new HOMOs near the Fermi level. A significant amount of charge transfer was also observed in complexes, reflecting the increase in charge conductivity. NCI and QTAIM analyses evidenced the presence of significant noncovalent dispersion and electrostatic forces in Li/g-C3N4 and respective complexes. Charge decomposition analysis gave an idea of the transfer of charge density between quantum dots and analytes. Finally, TD-DFT explained the optical behavior of the reported complexes. The findings of this study suggested that both bare g-C3N4 and Li/g-C3N4 can effectively be used as atmospheric sensors having excellent adsorbing properties toward toxic analytes.

5.
J Mol Graph Model ; 126: 108646, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37816302

RESUMO

Nonlinear optical (NLO) switchable materials play a crucial role in the fields of electronics and optoelectronics. The selection of an appropriate switching approach is vital in designing such materials to enhance their NLO response. Among various approaches, thermos-switching materials have shown a 4-fold increase in NLO response compared to other photo-switching materials. In this study, we computationally investigated the geometric, electronic, and nonlinear optical properties of reversible lactone-based thermochromic compounds using the ωB97XD/6-311+G (d,p) level of theory. Molecular orbital studies are employed to analyze the electronic properties of the close and open isomers of these compounds, while time-dependent density functional theory (TD-DFT) analysis is utilized to evaluate their molecular absorption. Our findings reveal that the π-electronic conjugation-induced delocalization significantly influences the ON-OFF switchable nonlinear optical response of the lactone-based thermochromic compounds. Notably, among all compounds, the open isomer of lactone 2 exhibits the highest hyperpolarizability value (6596.69 au). Furthermore, we extended our analysis to investigate the frequency-dependent second and third-order hyperpolarizabilities. The most pronounced frequency-dependent NLO response is observed at 532 nm. Additionally, we calculated the refractive index of these thermochromic compounds to further assess their nonlinear optical response. The open isomer of lactone 1 demonstrates the highest refractive index value (3.99 × 10-14 cm2/W). Overall, our study highlights the excellent potential of reversible thermochromic compounds as NLO molecular thermos-switches for future applications.


Assuntos
Refratometria , Teoria da Densidade Funcional
6.
Heliyon ; 9(12): e22575, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046163

RESUMO

Medicinal plants are the main source of active chemical constituents responsible for curing or mitigating various ailments. To discover new, safe, and effective drug candidates the isolation and screening of natural products are essential. In the current research work, lapachol was isolated from Fernandoa adenophylla, which was evaluated for anti-inflammatory effect followed by molecular docking. The isolated compound was tested for anti-inflammatory effects using in vitro (HRBC assay) and in vivo (xylene-induced ear edema) experimental models. Various concentrations of lapachol demonstrated anti-inflammatory effects with a percent potential of 77.96 at 100 µM. Different concentrations of Lapachol demonstrated a dose-dependent anti-edematous effect with a maximum percent effect of 77.9 % at a higher dose. The histopathological study revealed that the application of xylene led to a significant increase in ear thickness, along with clear signs of ear edema and infiltration of inflammatory cells, as well as epidermal hyperplasia of the dermis when compared to the control group. However, treatment with the investigated compound showed a significant reduction in ear thickness and pathological differences comparable to those observed in the group treated with diclofenac. Density functional theory calculations are accomplished to gain insight into structural and spectroscopic properties. Geometry optimization, FMO, and MEP analyses are performed. Overall, the molecular docking results indicate that lapachol has potential as a COX inhibitor by binding to the active sites of both COX-1 and COX-2 enzymes.

7.
ACS Omega ; 8(48): 45589-45598, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075839

RESUMO

Scientists are continuously trying to discover new approaches to develop materials with exceptional nonlinear optical responses. Compared with the single-ring Janus face compound (F6C6H6), the three-ring Janus face compound (C13H10F12) has a larger surface, where superalkali metals can be doped quite easily. Herein, the nonlinear optical response of Janus molecule dodecafluorophenylene (DDFP)-based superalkalides has been explored. The stability of the newly designed complexes is evident in the negative interaction energy values (ranging from -42.17 to -60.91 kcal/mol). The superalkalide nature of the complexes is corroborated through natural bond orbital (NBO) analysis, which shows negative charges on M3. This feature is further confirmed through frontier molecular orbital (FMO) analyses showing the highest occupied molecular orbital (HOMO) density over superalkalis (M3). The analysis also reveals that the H-L gap is reduced from 9.57 eV (for bare DDFP) to 2.11 eV for doped systems by adsorption of dopants on the DDFP surface. Moreover, the NLO response of the studied complexes is evaluated via static hyperpolarizabilities. The maximum value of first hyperpolarizability (ßo) among all of the designed compounds is for K3-DDFP-K3 (7.80 × 104 au) at M06-2X/6-31+G(d,p) level of theory. The ßo is also rationalized through a two-level model. Furthermore, for ßvec, the projection of hyperpolarizability on the dipole moment is calculated. The comparable results of ßvec and ßo indicate that the charge transfer in the complexes is parallel to the molecular dipole moments. These compounds, besides providing a new entry into excess-electron compounds, will also pave the way for the design and synthesis of further novel NLO materials.

8.
Heliyon ; 9(11): e21508, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027972

RESUMO

In the ongoing pursuit of novel and efficient NLO materials, the potential of alkali metal-doped {6}cycloparaphenylene ({6}CPP) and methylene bridged {6} cycloparaphenylene (MB{6}CPP) nanohoops as excellent NLO candidates has been explored. The geometric, electronic, linear, and nonlinear optical properties of designed systems have been investigated theoretically. All the nanohoops demonstrated thermodynamic stability, with remarkable interaction energies reaching up to -1.39 eV (-0.0511 au). Notably, the introduction of alkali metals led to a significant reduction in the HOMO-LUMO energy gaps, with values as low as 2.92 eV, compared to 6.80 eV and 6.06 eV for undoped {6}CPP and MB{6}CPP, respectively. Moreover, the alkali metal-doped nanohoops exhibited exceptional NLO response, with the K@r6-{6}CPP complex achieving the highest first hyperpolarizability of 56,221.7 × 10-30 esu. Additionally, the frequency-dependent first hyperpolarizability values are also computed at two commonly used wavelengths of 1550 nm and 1907 nm, respectively. These findings highlight the potential of designed nanohoops as promising candidates for advanced NLO materials with high-tech applications.

9.
ACS Omega ; 8(41): 37820-37829, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867697

RESUMO

In the pursuit of sustainable clean energy sources, the hydrogen evolution reaction (HER) has attained significant interest from the scientific community. Single-atom catalysts (SACs) are among the most promising candidates for future electrocatalysis because they possess high thermal stability, effective electrical conductivity, and excellent percentage atom utilization. In the present study, the applicability of late first-row transition metals (Fe-Zn) decorated on the magnesium oxide nanocage (TM@Mg12O12) as SACs for the HER has been studied, via density functional theory. The late first-row transition metals have been chosen as they have high abundance and are relatively low-cost. Among the studied systems, results show that the Fe@Mg12O12 SAC is the best candidate for catalyzing the HER reaction as it exhibits the lowest activation barrier for HER. Moreover, Fe@Mg12O12 shows high stability (Eint = -1.64 eV), which is essential in designing SACs to prevent aggregation of the metal. Furthermore, the results of the electronic properties' analysis showed that the HOMO-LUMO gap of the nanocage is decreased significantly upon doping of Fe (from 4.81 to 2.28 eV), indicating an increase in the conductivity of the system. This study highlights the potential application of the TM@nanocage SAC systems as effective HER catalysts.

10.
RSC Adv ; 13(42): 29231-29241, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37809028

RESUMO

Formaldehyde, a volatile organic compound (VOC) released by building and decoration materials, has many applications in the chemical feedstock industry. Excessive release of formaldehyde can cause serious health issues, such as chest tightness, cough, cancer, and tissue damage. Therefore, detection of formaldehyde is required. Herein transition metal (Fe, Ni, and Pd) doped olympicene is evaluated as a gas sensor for the detection of formaldehyde. The performance of the designed electrochemical sensor is evaluated through interaction energy, natural bond orbital (NBO) non-covalent interaction (NCI), electron density differences (EDD), electrostatic potential (ESP), quantum theory of atom in molecule (QTAIM), frontier molecular orbital (FMO), and density of states (DOS) analysis. Interaction energies obtained at B3LYP-D3/def-2 TZVP level of theory shows that formaldehyde is physiosorbed over the surface of transition metal doped olympicene. The trend for interaction energy is OLY(Ni)/HCHO > OLY(Fe)/HCHO > OLY(Pd)/HCHO. The presence of non-covalent interactions is confirmed by the QTAIM and NCI analyses, while transfer of charges is confirmed by natural bond orbital analysis. The reduced density gradient (RDG) approach using noncovalent interaction (NCI) analysis demonstrates that electrostatic hydrogen bonding interactions prevail in the complexes. Recovery time is calculated to check the reusability of the sensor. This study may provide a deep insight for the designing of highly efficient electrochemical sensor against formaldehyde with transition metals doped on olympicene.

11.
ACS Omega ; 8(39): 36493-36505, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810689

RESUMO

Hydrogen is currently considered as the best alternative for traditional fuels due to its sustainable and ecofriendly nature. Additionally, hydrogen dissociation is a critical step in almost all hydrogenation reactions, which is crucial in industrial chemical production. A cost-effective and efficient catalyst with favorable activity for this step is highly desirable. Herein, transition-metal-doped fullerene (TM@C60) complexes are designed and investigated as single-atom catalysts for the hydrogen splitting process. Interaction energy analysis (Eint) is also carried out to demonstrate the stability of designed TM@C60 metallofullerenes, which reveals that all the designed complexes have higher thermodynamic stability. Furthermore, among all the studied metallofullerenes, the best catalytic efficiency for hydrogen dissociation is seen for the Sc@C60 catalyst Ea = 0.13 eV followed by the V@C60 catalyst Ea = 0.19 eV. The hydrogen activation and dissociation processes over TM@C60 metallofullerenes is further elaborated by analyzing charge transfer via the natural bond orbital and electron density difference analyses. Additionally, quantum theory of atoms in molecule analysis is carried out to investigate the nature of interatomic interactions between hydrogen molecules and TMs@C60 metallofullerenes. Overall, results of the current study declare that the Sc@C60 catalyst can act as a low cost, highly efficient, and noble metal-free single-atom catalyst to efficiently catalyze hydrogen dissociation reaction.

12.
J Mol Graph Model ; 125: 108611, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37660614

RESUMO

Traditionally, nanocones as a drug delivery material allow controlled drug delivery close to the target area while reducing the toxicity and generic accumulation associated with traditional intravenous injection methods. In the current study, density functional theory (DFT) is employed to investigate the therapeutic potential of carbon nanocone oxide (ONC) as a carrier with zidovudine drug for the treatment of human immunodeficiency virus (HIV). The electronic ground state and excited state were studied to evaluate the drug carrier potential of ONC and Zidovudine-ONC complex. The Frontier Molecular Orbitals (FMOs) and Molecular Electrostatic Potential (MEPs) revealed that the ONC carrier acts as a donor and zidovudine as an acceptor. The FMOs confirmed the interaction between drug and carrier stabilization energy by calculating chemical hardness, material softness, electronegativity, Ionization energy and electron affinity. The natural bond analysis (NBO), non-covalent interaction (NCI) and electron localization function (ELF) revealed the charge transfer between zidovudine and ONC. The density of state (DOS) and Charge Deposition analysis (CDA) provided the charge transfer. To study the excited state of zidovudine, transition density matrix (TDM), UV(Ultra-visible), IR (infrared), Raman, and NMR (Nuclear Magnetic Resonance) spectra of ONC and zidovudine-ONC complex have been plotted. The spectra showed a significant red shift in the zidovudine-ONC complex. Photoinduced electron studies (PET) showed fluorescence quenching because of the interaction between the drug and the carrier and provided a graphical explanation of the distinct excited state. All the results show that the ONC carrier has therapeutic potential as a zidovudine carrier for the treatment of Human Immunodeficiency Virus (HIV).


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Zidovudina , Portadores de Fármacos , Óxidos
13.
Heliyon ; 9(9): e19325, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662734

RESUMO

Significant efforts are continuously exerted by the scientific community to explore new strategies to design materials with high nonlinear optical responses. An effective approach is to design alkalides based on Janus molecules. Herein, we present a new approach to remarkably boost the NLO response of alkalides by stacking the Janus molecules. Alkalides based on stacked Janus molecule, M-n-M' (where n = 2 & 3 while M and M' are Li/Na/K) are studied for structural, energetic, electrical, and nonlinear optical properties. The thermodynamic stability of the designed complexes is confirmed by the energetic stabilities, which range between -14.07 and -28.77 kcal/mol. The alkalide character of alkali metals-doped complexes is confirmed by the NBO charge transfer and HOMO(s) densities. The HOMO densities are located on the doped alkali metal atoms, indicating their alkalide character. The absorptions in UV-Vis and near IR region confirm the deep ultraviolet transparency of the designed complexes. The maximum first static and dynamic hyperpolarizabilities of 5.13 × 107 and 6.6 × 106 au (at 1339 nm) confirm their high NLO response, especially for K-2-M' complexes. The NLO response of alkalides based on stacked Janus molecules is 1-2 orders of magnitude higher than the alkalide based on Janus monomer. The high values of dc-Kerr and electric field-induced response e.g., max ∼107 and 108 au, respectively have been obtained. These findings suggest that our designed complexes envision a new insight into the rational design of stable high NLO performance materials.

14.
Molecules ; 28(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687112

RESUMO

Switchable nonlinear optical (NLO) materials have widespread applications in electronics and optoelectronics. Thermo-switches generate many times higher NLO responses as compared to photo-switches. Herein, we have investigated the geometric, electronic, and nonlinear optical properties of spiropyranes thermochromes via DFT methods. The stabilities of close and open isomers of selected spiropyranes are investigated through relative energies. Electronic properties are studied through frontier molecular orbitals (FMOs) analysis. The lower HOMO-LUMO energy gap and lower excitation energy are observed for open isomers of spiropyranes, which imparts the large first hyperpolarizability value. The delocalization of π-electrons, asymmetric distribution and elongated conjugation system are dominant factors for high hyperpolarizability values of open isomers. For deep understanding, we also analyzed the frequency-dependent hyperpolarizability and refractive index of considered thermochromes. The NLO response increased significantly with increasing frequency. Among all those compounds, the highest refractive index value is observed for the open isomer of the spiropyran 1 (1.99 × 10-17 cm2/W). Molecular absorption analysis confirmed the electronic excitation in the open isomers compared to closed isomers. The results show that reversible thermochromic compounds act as excellent NLO molecular switches and can be used to design advanced electronics.

15.
J Biomol Struct Dyn ; : 1-13, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707992

RESUMO

In recent years, there has been growing interest in exploring natural compounds with anti-inflammatory properties for potential therapeutic applications. This study focuses on investigating the anti-inflammatory potential of peshawaraquinone (PAQ), a compound isolated from Fernandoa adenophylla, which is known for its local use in pain relief. We aim to evaluate the efficacy of peshawaraquinone in both in vitro and in vivo models and gain insights into its mode of action. In the in vitro Human red blood cell (HRBC) assay, various concentrations of peshawaraquinone were tested for their ability to inhibit the hemolysis of red blood cells, a well-established indicator of anti-inflammatory activity. The results demonstrated a maximum percent inhibition of 79.69 at a concentration of 100 µM, indicating significant anti-inflammatory potential. Furthermore, the in vivo xylene-induced ear edema model was employed to assess the compound's efficacy in reducing inflammation. Xylene was topically applied to the ear to induce edema, and peshawaraquinone was administered to evaluate its inhibitory effects. The findings revealed a substantial 74.19% reduction in ear edema, accompanied by decreased ear thickness and histopathological improvements, such as inhibited cell infiltration and epidermal hyperplasia. To gain further insights into the compound's mechanism of action, density functional theory (DFT) calculations were performed to investigate its spectroscopic characteristics and geometric properties. Additionally, docking studies were conducted on key targets involved in inflammation, including COX-1 and COX-2. In conclusion, this study showcases the significant anti-inflammatory potential of peshawaraquinone, offering promising prospects for its use as a natural anti-inflammatory agent. The results from both in vitro and in vivo models, as well as the mechanistic insights gained from computational analyses, provide a solid basis for further exploration of peshawaraquinone's therapeutic applications.Communicated by Ramaswamy H. Sarma.

16.
Heliyon ; 9(8): e18264, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533989

RESUMO

The designing of new materials having outstanding nonlinear optical (NLO) response is much needed for use in latest optics. Herein, the geometric, electronic and NLO properties of alkali and alkaline earth metals doped C6O6Li6 (alk-C6O6Li6-alkearth, alkearth = Ca, Mg, Be and alk = K, Na, Li) electrides is studied via quantum chemical approach. The interaction energies (Eint) are examined to illustrate their thermodynamic stability. The strong interaction energy of -39.99 kcal mol-1 is observed for Ca-C6O6Li6-Li electride in comparison to others. Frontier molecular orbitals (FMOs) energy gap of considered complexes is changed due to the electronic density shifting between metals and C6O6Li6 surface, which notifies the semi conducting properties of these electrides. The FMOs isodensities and natural bond orbital (NBO) charge analysis are performed to justify charge transfer between dopants and complexant. UV-Visible study also confirmed the application of these electrides as deep ultra-violet laser devices. NLO response is studied through calculation of first hyperpolarizability (ßo). The highest ßo value of 1.68 × 105 au is calculated for Mg-C6O6Li6-K electride. NLO response is further rationalized by three- and two-level models approach.

17.
J Biochem Mol Toxicol ; 37(10): e23433, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37394811

RESUMO

In this work, four fluorinated α, ß-unsaturated ketones named as 3-(3-bromophenyl)-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one (1), 3-(4-methoxyphenyl)-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one (2), 3-(3-bromo-5-chloro-2-hydroxyphenyl)-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one (3) and 3-(2-hydroxy-5-methylphenyl)-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one (4) were synthesized by Claisen-Schmidt reaction. The synthesized molecules were then characterized through ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR), 1 H-NMR, 13 C-NMR, and mass spectrometry. The antioxidant potential, Urease inhibition, and interaction of compounds 1-4 with Salmon sperm DNA were experimentally explored and supported by molecular docking studies. The synthesized compounds strongly interact with SS-DNA through intercalative mode. It was noticed that compound 1 served as potent Urease inhibitor while compound 4 as better antioxidant among synthesized compounds. Moreover, frontier molecular orbitals, nonlinear optical (NLO) properties, natural bond orbitals, molecular electrostatic potential, natural population analysis, and photophysical properties of synthesized compounds were accomplished through density functional theory and time-dependent density functional theory. The band gap of all the compounds have been worked out using Taucs method. In addition to that, a precise comparative account of UV and IR data obtained from theoretical and experimental findings showed good agreement between theoretical and experimental data. The findings of our studies reflected that compounds 1-4 possess better NLO properties than Urea standard and the band gap data also reflected their prospective use towards optoelectronic materials. The better NLO behavior of compounds was attributed to the noncentrosymmetric structure of synthesized compounds.


Assuntos
Antioxidantes , Urease , Masculino , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Sêmen , DNA , Espectrofotometria Ultravioleta
18.
Heliyon ; 9(7): e17610, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37455946

RESUMO

A new series of alkaline earthides based on Cryptand [2.2.2] (C222) containing nine complexes is designed by carefully placing alkali metals and alkaline earth metals inside and outside the C222 complexant, respectively i.e., M1(C222)M2 (M1 = Li, Na, K; M2 = Be, Mg, Ca). The designed complexes are reasonably stable both electronically and thermodynamically, as revealed through their vertical ionization potentials (VIPs) and interaction energies, respectively. Moreover, the true alkaline earthide nature of the complexes is confirmed through NBO and FMO analyses showing the negative charges and HOMOs over the alkaline earth metals, respectively. The further validity of true earthide characteristic is represented graphically by the spectra of partial density of states (PDOS). HOMO-LUMO gaps of the compounds are also very small (from 2.23 to 2.83 eV) when compared with pure cage's (C222) H-L gap i.e., 5.63 eV. All these features award these complexes with very small values of transition energies (ΔE) ranging from 0.68 to 2.06 eV ultimately resulting in remarkably high hyperpolarizability values up to 2.7 × 105 au (for Na+(C222)Mg-). Furthermore, applying external electric field (EEF) on the complexes enhances hyperpolarizability further. A remarkable increase of 1000 folds has been seen when hyperpolarizability of K+(C222)Ca- is calculated after EEF application i.e., from 8.79 × 104 au to 2.48 × 107 au; when subjected to 0.001 au external electric field.

19.
Org Biomol Chem ; 21(32): 6549-6555, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37523214

RESUMO

The stoichiometric defluorinative functionalization of ArCF3 is a conceptually appealing research target. It enables the challenging late-stage functionalization of CF3-containing aromatic molecules and contributes to the remedy of environmental risks resulting from the accumulation of relatively inert ArCF3-containing molecules. Similarly, Ar-CN bond features limit their utilization in cross-coupling reactions. Thus, the employment of benzonitriles in decyanative Suzuki-Miyaura type coupling remains in high demand in the field of C-C bond formation. Herein, we report mechanochemically induced and ytterbium oxide (Yb2O3)-mediated defluorinative cyanation of trifluoromethylarenes. In addition, we describe a facile mechanochemically facilitated and nickel-catalyzed decyanative arylation of benzonitriles to access biphenyls. Combining both processes in a one-pot multicomponent protocol to achieve a concise direct arylative detrifluoromethylation of ArCF3 is described herein. This work is the first hitherto realization of C-C coupling with CF3 as a formal leaving group.

20.
Phys Chem Chem Phys ; 25(30): 20430-20450, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466347

RESUMO

Density functional theory (DFT) calculations were performed for a series of supramolecular assemblies containing azobenzene (Azo-X where X = I, Br and H) and alkoxystilbazole subunits to evaluate their electronic, linear and nonlinear optical properties. These assemblies are derivatives of azobenzene, obtained by the substitution of electron-withdrawing and electron-donating groups onto the molecular skeleton. The interaction energies (Eint) of all the designed supramolecular complexes (IA-IF, IIA-IIF and IIIA-IIIF) range from -1.0 kcal mol-1 to -7.7 kcal mol-1. The electronic properties of these hydrogen/halogen bond driven supramolecular assemblies such as vertical ionization energies (VIE), HOMO-LUMO energy gap (GH-L), excitation energies, density of states (DOS) and natural population (NPA) analyses were also computed. The non-covalent interaction index (NCI) and quantum theory of atoms in molecules (QTAIM) analyses were also performed to validate the nature of inter- and intra-molecular interactions in these complexes. A substantial enhancement in the first hyperpolarizability (ß0) values of the designed supramolecular complexes was observed, which is driven by the charge transfer from the pyridyl moiety of alkoxystilbazole to Azo-X. The highest ß0 value of 1.3 × 104 au was observed for the supramolecular complex of p-nitro substituted azobenzene with alkoxystilbazole (ID complex). Moreover, the results show that the substitution of electron-withdrawing groups on Azo-X can also bring larger ß0 values for such complexes. It was confirmed on a purely theoretical basis that both the types of noncovalent interactions present and the substituent group incorporated influence the nonlinear optical (NLO) response of the systems. Furthermore, the ß0 values of the E (trans) and Z (cis) forms were compared to demonstrate the two-way photoinduced switching mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...